Honors Pre-Calculus Projection, positive unit normal

\[\vec{a} = 3\hat{i} + 5\hat{j} \quad \vec{b} = 4\hat{i} - \hat{j} \quad \vec{w} = 2\hat{i} + 8\hat{j} \quad A(2, -3) \quad B(-3, -4) \quad C(4, 0) \quad D(0, -3) \]

Find the following:

1. Vector with same direction as \(\vec{b} \), but 1 unit long.
 \[\vec{n} = \left(\frac{4}{\sqrt{17}}, -\frac{1}{\sqrt{17}} \right) \]

2. Projection of \(\vec{u} \) onto \(\vec{b} \). And illustrate \(\vec{u} \), \(\vec{b} \) and projection below left.

3. Vector with same direction as \(\vec{a} \), but 1 unit long.
 \[\vec{n} = \left(\frac{3}{\sqrt{34}}, \frac{5}{\sqrt{34}} \right) \]

4. Projection of \(\vec{v} \) onto \(\vec{a} \). And illustrate \(\vec{a} \), \(\vec{v} \) and projection above right.

5. Vector with same direction as \(\vec{AC} \), but 1 unit long.
 \[\vec{AC} = \left< 2, 3 \right> \quad \vec{n} = \left< \frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}} \right> \]

6. Projection of \(\vec{AB} \) onto \(\vec{AC} \). And illustrate \(\vec{AB} \), \(\vec{AC} \) and projection below left.

7. Vector with same direction as \(\vec{w} \), but 1 unit long.
 \[\vec{n} = \left< \frac{2}{\sqrt{66}}, \frac{5}{\sqrt{66}} \right> \]

8. Projection of \(\vec{v} \) onto \(\vec{w} \). And illustrate \(\vec{v} \), \(\vec{w} \) and projection above right.

9. Positive Unit Normal of \(3x - 2y - 6 = 0 \).
 \[\vec{n} = \left< \frac{3}{\sqrt{13}}, -\frac{2}{\sqrt{13}} \right> \]

10. Positive Unit Normal of \(x + 9y = 18 \).
 \[\vec{n} = \left< \frac{1}{\sqrt{82}}, -\frac{9}{\sqrt{82}} \right> \]

11. Positive Unit Normal of \(y - 5 = 3(x - 2) \).
 \[\vec{n} = \left< \frac{2}{3}, \frac{10}{3} \right> \]

12. Positive Unit Normal of \(y = \frac{2}{3}x + 4 \).
 \[\vec{n} = \left< -\frac{2}{3}, \frac{1}{3} \right> \]